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We develop a quantum Monte Carlo procedure to compute the Renyi mutual information of an interacting
quantum many-body system at nonzero temperature. Performing simulations on a spin-1

2 XXZ model, we
observe that for a subregion of fixed size embedded in a system of size L, the mutual information converges at
large L to a limiting function which displays nonmonotonic temperature behavior corresponding to the onset of
correlations. For a region of size L /2 embedded in a system of size L, the mutual information divided by L
converges to a limiting function of temperature, with apparently nontrivial corrections near critical points.
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Correlation functions have been an essential tool in deter-
mining properties of quantum systems. However, in exotic
phases, traditional correlation functions may prove insuffi-
cient to capture hidden properties. As a result, the Renyi
entanglement entropies have attracted intense interest re-
cently for their abilities to deliver scaling terms with univer-
sal numbers, e.g., at phase transitions1 and in exotic topo-
logically ordered phases,2 regardless of basis or choice of
observable. The generalized Renyi entanglement entropies,
defined by

Sn�A� =
1

1 − n
ln�Tr��A

n�� , �1�

�where �A is the reduced-density matrix of subregion A�,
have been successfully measured recently using T=0 projec-
tor quantum Monte Carlo �QMC� in the valence-bond basis,
by employing the expectation value of a “Swap” operator.3

However, to study more general physics using Sn�A�, one
would like to develop a measure of entanglement entropy
applicable for models away from SU�2� symmetry and at T
�0.

At nonzero temperature, the mutual information �MI� pro-
vides the appropriate analog of the entanglement entropy,
measuring information between one part of the system and
another.4 In this Rapid Communication, we develop a proce-
dure for estimating the Renyi entropy in a finite-temperature
QMC simulation, and use it to calculate a Renyi MI, defined
in analogy to the von Neumann MI,

In�A:B� = Sn�A� + Sn�B� − Sn�AB� . �2�

Here, Sn�AB� is the nth Renyi entropy for the whole system
and Sn�A� , Sn�B� are the Renyi entropies for subsystems A
and B, respectively. At T�0, In�A :B� is expected to pick up
both classical and quantum correlations while at T=0,
In�A :B�=2Sn�A�=2Sn�B�.

Stochastic series expansion �SSE� quantum Monte
Carlo5–7 is a state-of-the-art finite-T method, able to effi-
ciently simulate systems of particles with a large variety of
U�1�, SU�2�, or SU�N� Hamiltonians. In this Rapid Commu-

nication, we use SSE to calculate the Renyi MI in the aniso-
tropic XXZ model on a two-dimensional square lattice with
Hamiltonian,

H = �
�ij�

��Si
zSj

z + Si
xSj

x + Si
ySj

y� . �3�

We verify our QMC procedure explicitly for small system
sizes by showing that it reproduces I2�A :B� calculated with
exact diagonalization �ED�. Then, by scaling the results to
large system sizes with QMC, we demonstrate that I2�A :B�
effectively captures correlations at both T�0 and T=0. We
observe nonmonotonic behavior in the MI, including a peak
at high temperature, likely associated with a freezing out of
classical correlations, followed by a rise at low temperature,
due to the development of long-range quantum entangle-
ment. Finally, at the Ising transition for ��1, we observe a
surprising scaling behavior of the MI, where a clear crossing
appears at Tc for different system sizes, possibly signaling a
different type of universal scaling for this quantity.

Finite-T QMC measurement of S2. The replica trick8 for
calculating the generalized Renyi entropies has been used
extensively in field theory, both analytically1 as well as in
Monte Carlo simulations of lattice gauge theories.9,10 The
essential formulation is to consider the d+1-dimensional
simulation cell with a modified topology, that of an n-sheeted
Riemann surface, with the region A being periodic in n� �in
imaginary time�, while the complement region B is periodic
in �. Restricting to n=2 �see Fig. 1�, the partition function
Z�A ,2 ,T� of the modified system is related to the trace of the
reduced density matrix squared,

Tr �A
2 =

Z�A,2,T�
Z�T�2 , �4�

where Z�T� is the partition function of the “regular” unmodi-
fied system at temperature T.

One immediately sees that the Renyi entropy will be ac-
cessible to any finite-T quantum Monte Carlo procedure that
is based on a direct implementation of the modified partition
function Z�A ,2 ,T�. At a given temperature, S2 can be calcu-
lated, for example, through a thermodynamic integration
from high temperatures, analogous to the calculation of free
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energy in classical systems. In this case, integration of two
separate simulations are needed; one for Z�A ,2 ,T� and an-
other for Z�T�,

S2�T� = − ln Z�A,2,T� + 2 ln Z�T� = − SA�� = 0�

+ �
0

�

�E�A,�d� + 2S0�� = 0� − 2�
0

�

�E�0,�d� . �5�

Here, the subscript A ,� refers to the energy estimator calcu-
lated at a given temperature T=1 /� in the Z�A ,2 ,T� simu-
lation and the subscript 0 ,� refers to Z�T�. Note that the
entropy S0��=0�=N ln�2� for an N-site spin-1

2 system. For a
system with NA sites in subregion A, SA��=0�= �NA+2�N
−NA��ln�2�. Simulation results used in this Rapid Communi-
cation access S2�T� through Eq. �5�; other methods such as
extended ensemble techniques can also be used.

SSE implementation. The above procedure can be imple-
mented in any flavor of finite-T QMC based on the partition
function, but we describe now a specific implementation in
SSE QMC, referring the reader to the literature for the par-
ticular details and notation of the method.6 The SSE is based
on a power-series expansion of the partition function. The
essential modification of the usual SSE formulation is simply
the direct implementation of the modified boundary configu-
ration for Z�A ,2 ,T�, as described in the above illustration
�Fig. 1�. The Sz basis state is decomposed into spins occur-
ring in region A and its complement B: 	��= 	�A�	�B�. The
SSE simulation cell is composed of this basis and a list of
operators that propagate 	�� through imaginary time. To
simulate Z�A ,2 ,T�, two separate operator lists are employed,
composed of n1 and n2 operators, which are each allowed to
fluctuate independently. Analogous to the typical SSE formu-
lation, two separate cut-off variables are used, M1�n1 and
M2�n2. Three crucial changes are thus needed in the SSE

sampling of the operator list and basis, as described below.
First, note that the probability to insert or remove a bond

operator Hb in the diagonal update is modified,

Padd =
�Nb���	Hb	��+1�

�M� − n��
, �6�

Premove =
�M� − n� + 1�

�Nb���	Hb	��+1�
, �7�

where b is the lattice position of the bond operator �which
can occur on Nb nearest-neighbor bonds in Eq. �3��, and � is
the “time” position in the expansion direction ��� �1,M1
+M2��. The index � has values 1 and 2 for Z�A ,2 ,T�. The
two operators lists are sampled independently in the diagonal
update,6 thus their respective size �n1 or n2� is allowed to
fluctuate independently. Since the inverse temperature � oc-
curs in each probability above, the total number of operators
n1+n2 is on average related to the total expansion direction
2� �which also suggests the straightforward extension to the
n-sheeted Riemann surface, where �=1, . . . ,n�.

The second significant modification to the SSE sampling
occurs in the loop update. In fact, if one follows the standard
two-step procedure in the loop update algorithm—first con-
structing a linked list of connected “vertices” and second,
performing loop updates in this linked list6—then the modi-
fication reduces to a straightforward reconnection of the to-
pology of the linked list. Following intuition, the links be-
tween vertices are modified such that, if a spin in the vertex
occurs in region A, connections are made as usual for the
Z�T� system with a periodic boundary at 2� �	�0

A� in Fig. 1�.
For spins in region B, vertices containing operators in the list
n1 are connected only to themselves across the boundary 	�0

B�
at � �or, for vertices containing the operators in n2, at
	�1

B�—Fig. 1�. Remarkably, once this modified topology is
implemented in the linked list, the loop updates themselves
are carried out as usual. In particular, any vertex transition
weights which are used in the usual simulation Z�T� can be
used without modification in the double-sheeted simulation
Z�A ,2 ,T�, including deterministic, heat bath, or directed
loops.6

The final modification of note is the measurement of the
expectation value of the energy in Z�A ,2 ,T�, which must be
rederived along the lines of Ref. 7. Then, one finds that the
energy is related to the total number of operators in both
lists,

�E�A,� =
�n1 + n2�

2�
, �8�

where the additional factor of 2 in the denominator can be
modified to n for the generalized Renyi entropies.

Simulation results for MI. In Fig. 2, we show the MI for a
system of size 4	4 with Hamiltonian �3�, where region A is
a square of size 3	3. The precise correspondence between
SSE and ED data for I2 clearly verifies the above method.
Note that with ED, we are also able to compute I1. Two
features are observed which deserve discussion below.

The first feature is the low-temperature behavior of the
MI for ��1. In the infinite system size limit, for any �

AB

|αA
1〉

|αB
0〉 |αA

1〉

β

β

|αB
1〉 |αA

0〉

|αA
0〉|αB

0〉

M2

M1

|αB
1〉

n2

n1

FIG. 1. �Color online� A schematic representation of the simu-
lation cell for Z�A ,2 ,T� in finite-T quantum Monte Carlo. The one-
dimensional basis is represented by the horizontal lines, and the
vertical direction is the expansion, or imaginary time dimension.
World lines �particle paths� are periodic in region A over the time
length of size 2�. In the region B �shaded�, world lines are periodic
in time �.
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�1,11 the system spontaneously breaks a discrete Ising sym-
metry at low temperature. As a result, for finite system sizes,
the two lowest eigenvalues of the Hamiltonian, E0, E1 are
almost degenerate �E1−E0
0.00009 for this system� with a
gap E2−E1 to the rest of the spectrum. For E1−E0
T
E2
−E1 the density matrix �AB for the whole system is close to a
mixture of the two lowest states �0 ,�1,

�AB 
 �1/2��	�0���0	 + 	�1���1	� �9�

and so S1�AB� is very close to ln�2�. However, since
S1�AB�=0 at T=0, the entropy S1�AB� jumps by 
ln�2� over
a very short interval of temperatures close to T=0. In con-
trast, the entropies S1�A� and S1�B� are smooth at low tem-
peratures. Hence, for ��1 the MI S1�A�+S1�B�−S1�AB�
jumps by approximately ln�2� at low temperatures due to
breaking of the discrete symmetry, as shown in Fig. 2 for
�=4. Thus, extracting the T=0 entanglement entropy from
T�0 data is very difficult, requiring the study of very low
temperatures for ��1. For ��1, the splitting between low-
lying eigenvalues is much larger, making it easier to extract
the T=0 entanglement entropy, but the presence of low-lying
“tower of states” modes still suggests that a projector
approach3 should be preferred to obtain zero-temperature
data.

A second interesting feature observed is a maximum in I2
at finite T for �=0 and 4. For �=4, this is the global maxi-
mum, while for �=0, the maximum is followed by a further
increase at low temperature. Physically, we interpret these
maxima as follows: at very high temperature, the system has
no correlations and hence no MI. As the temperature is ini-
tially lowered, the MI increases. However, eventually the
fluctuations in the system start to freeze out, leading to a
decrease in the MI. Finally, at low temperature, long-range
quantum entanglement begins to appear, leading again to an
increase in the MI. Note that one can also see a small maxi-
mum in the MI of I1 for �=4 in the inset at the bottom of
Fig. 2

Scaling behavior. In Fig. 3 we plot the MI for a subregion
of size 3	3 embedded in a larger L	L system for �=0. As
L increases, the curves approach a limiting function of
temperature—observed also for the other � values studied in
this Rapid Communication. We also consider the case, where
region A has size L /2	L /2 and the system has size L	L. In
Fig. 4, we plot I2�A :B� /L as a function of L in the case of
�=4. The inset shows I2�A :B� /L over a wide temperature
range while the main figure is a closeup of data near T=Tc

2.25 �Tc was determined roughly by separate measure-
ments of the specific heat in Z�T��. Dividing by L shows the
area law behavior with the curves in the inset approaching a
limiting function of temperature. This is an important feature
of the MI: the difference of entropies S2�A�+S2�B�−S2�AB�
cancels terms proportional to volume, leaving a contribution
proportional to the surface area of A.

As one can see from the inset, the curves cross at two
different temperatures. The high-temperature crossing, at T2

4.45, can be understood simply on theoretical grounds. For
TTc, the correlations in the system are short ranged, so we
expect that I2�A :B�=Lf�T�+g�T�+O�exp�−L��, where the
term g�T� is due to a correction to the MI from the four
corners of region A, while Lf�T� represents a contribution
from the edges of region A �indeed, we verified that this
linear fit is very accurate for T near T2�. Then, the crossing
corresponds to a change in sign of g�T�.
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FIG. 2. �Color online� Measurements of I1�A :B� �from ED� and
I2�A :B� �from ED and SSE� for values of �=0, 1, and 4 in Eq. �3�.
In the lower plot ��=4� the exact T=0 values of I1�A :B� �higher�
and I2�A :B� �lower� are shown. The jump close to T=0 is caused by
the near degeneracy of the lowest two energy levels of this system.
The inset shows the I1�A :B� curve on a linear scale, excluding the
T=0 value, for �=4.
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FIG. 3. �Color online� Mutual information of the XY model for
a square subregion A of constant size 3	3.
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FIG. 4. �Color online� Mutual information scaled by the linear
system size L, for the XXZ model with �=4 and a square subregion
A of size L /2	L /2. The inset shows two crossing points for
I2�A :B� /L. The main figure shows detail of the lower-T crossing.

FINITE-SIZE SCALING OF MUTUAL INFORMATION IN… PHYSICAL REVIEW B 82, 100409�R� �2010�

RAPID COMMUNICATIONS

100409-3



The lower temperature crossing is more remarkable since
it occurs at T
Tc. Our explanation of the crossing at high T
relies on microscopic details �the particular sign of g�T��, so
there does not at first seem to be any reason for the low-T
crossing to occur near the critical point. One might have
dismissed this as a coincidence but we also observe for �
=2 the low-T crossing again occurs at T
Tc. To explain this
behavior, we conjecture that the MI as a function of tempera-
ture near Tc has the form,

I2�A:B� = Lf�T� + L�k��T − Tc��L� + g�T� + ¯ , �10�

where 0���1 �possibly this term depends logarithmically
on L instead�. In this case, near the critical point the term L�

dominates the term g�T� and the crossing is determined not
by microscopic properties such as g�T� but by universal
properties.

Interestingly, the phenomenon of crossing points is also
observed in the other models that we study. For the Heisen-
berg case ��=1�, the upper crossing occurs at T2
0.65.
There exists crossings also below the peak in I2�A :B� /L,
�around T
0.3 for the L studied�, however the crossing
point appears to decrease in temperature with increasing sys-
tem size. It would be interesting to determine if T1→0 as
�→1, following the trend in Tc. For the XY model, T2

0.85, while the lower temperature crossing occurs around
T1
0.41—a slightly higher value than the Kosterlitz-
Thouless temperature TKT=0.34303�8�.12 A thorough study
of the drift of this crossing point as a function of L, to see if

it corresponds to TKT in the L→� limit would be interesting.
Discussion. We have presented a simulation method to

measure mutual information at T�0, based on the Renyi
entropy Sn, in interacting quantum many-body systems. The
procedure uses quantum Monte Carlo based on a modified
partition function with efficient linear scaling in the spatial
�N� and temporal �n�� simulation cell sizes. Using SSE
QMC, we examine the finite-size scaling behavior of the n
=2 mutual information in the spin-1

2 XXZ model with various
anisotropies and observe interesting nonmonotonic behavior
related to the onset of classical and quantum correlations.
The method has allowed us to extract scaling behavior at
critical points in the model, raising interesting theoretical
questions regarding the universal scaling properties of the
mutual information, including the possibility that these are
governed by a critical exponent � as proposed above. The
generality of the idea for measuring mutual information,
coupled with the versatility of finite-T QMC methods based
on the partition function, should allow us to study a plethora
of interesting questions in the immediate future, including
scaling behavior in a quantum critical fan.

The authors thank A. Sandvik, D. Schwab, and A. J. Ber-
linsky for useful discussions, and the Boulder Summer
School for Condensed Matter for hospitality. This work was
made possible by the computing facilities of SHARCNET.
Support was provided by NSERC of Canada �A.B.K. and
R.G.M.�.

1 M. A. Metlitski, C. A. Fuertes, and S. Sachdev, Phys. Rev. B 80,
115122 �2009�.

2 S. T. Flammia, A. Hamma, T. L. Hughes, and X.-G. Wen, Phys.
Rev. Lett. 103, 261601 �2009�.

3 M. B. Hastings, I. González, A. B. Kallin, and R. G. Melko,
Phys. Rev. Lett. 104, 157201 �2010�.

4 M. M. Wolf, F. Verstraete, M. B. Hastings, and J. I. Cirac, Phys.
Rev. Lett. 100, 070502 �2008�.

5 A. W. Sandvik and J. Kurkijärvi, Phys. Rev. B 43, 5950 �1991�.
6 O. F. Syljuåsen and A. W. Sandvik, Phys. Rev. E 66, 046701

�2002�.
7 A. W. Sandvik, J. Phys. A 25, 3667 �1992�.

8 P. Calabrese and J. Cardy, J. Stat. Mech.: Theory Exp. �2004�,
P06002.

9 P. B. Buividovich and M. I. Polikarpov, Nucl. Phys. B 802, 458
�2008�.

10 Y. Nakagawa, A. Nakamura, S. Motoki, and V. I. Zakharov, The
XXVII International Symposium on Lattice Field Theory, 2009
�unpublished�, p. 188.

11 E. Loh, D. J. Scalapino, and P. M. Grant, Phys. Scr. 32, 327
�1985�.

12 R. G. Melko, A. W. Sandvik, and D. J. Scalapino, Phys. Rev. B
69, 014509 �2004�.

MELKO, KALLIN, AND HASTINGS PHYSICAL REVIEW B 82, 100409�R� �2010�

RAPID COMMUNICATIONS

100409-4

http://dx.doi.org/10.1103/PhysRevB.80.115122
http://dx.doi.org/10.1103/PhysRevB.80.115122
http://dx.doi.org/10.1103/PhysRevLett.103.261601
http://dx.doi.org/10.1103/PhysRevLett.103.261601
http://dx.doi.org/10.1103/PhysRevLett.104.157201
http://dx.doi.org/10.1103/PhysRevLett.100.070502
http://dx.doi.org/10.1103/PhysRevLett.100.070502
http://dx.doi.org/10.1103/PhysRevB.43.5950
http://dx.doi.org/10.1103/PhysRevE.66.046701
http://dx.doi.org/10.1103/PhysRevE.66.046701
http://dx.doi.org/10.1088/0305-4470/25/13/017
http://dx.doi.org/10.1088/1742-5468/2004/06/P06002
http://dx.doi.org/10.1088/1742-5468/2004/06/P06002
http://dx.doi.org/10.1016/j.nuclphysb.2008.04.024
http://dx.doi.org/10.1016/j.nuclphysb.2008.04.024
http://dx.doi.org/10.1088/0031-8949/32/4/016
http://dx.doi.org/10.1088/0031-8949/32/4/016
http://dx.doi.org/10.1103/PhysRevB.69.014509
http://dx.doi.org/10.1103/PhysRevB.69.014509

